Search results

Search for "numerical simulations" in Full Text gives 112 result(s) in Beilstein Journal of Nanotechnology.

Measurements of dichroic bow-tie antenna arrays with integrated cold-electron bolometers using YBCO oscillators

  • Leonid S. Revin,
  • Dmitry A. Pimanov,
  • Alexander V. Chiginev,
  • Anton V. Blagodatkin,
  • Viktor O. Zbrozhek,
  • Andrey V. Samartsev,
  • Anastasia N. Orlova,
  • Dmitry V. Masterov,
  • Alexey E. Parafin,
  • Victoria Yu. Safonova,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov,
  • Leonid S. Kuzmin,
  • Anatolie S. Sidorenko,
  • Silvia Masi and
  • Paolo de Bernardis

Beilstein J. Nanotechnol. 2024, 15, 26–36, doi:10.3762/bjnano.15.3

Graphical Abstract
  • frequency channels occupy areas within the left and right semicircles, respectively (Figure 1a). In each semicircle there are 44 CEBs with bow-tie dipole antennas. The receiving elements are located on the side of the substrate that is turned to the incident radiation. Numerical simulations of the frequency
PDF
Album
Full Research Paper
Published 04 Jan 2024

Current-induced mechanical torque in chiral molecular rotors

  • Richard Korytár and
  • Ferdinand Evers

Beilstein J. Nanotechnol. 2023, 14, 711–721, doi:10.3762/bjnano.14.57

Graphical Abstract
  • the fraction on the right-hand side can be interpreted approximately as the outgoing angular momentum current, in view of the expansion in Equation 18. Numerical simulations confirm the threshold behavior, see Figure 5. Below the threshold, the path is bound to the potential minimum. Above the
PDF
Album
Full Research Paper
Published 12 Jun 2023

Investigations on the optical forces from three mainstream optical resonances in all-dielectric nanostructure arrays

  • Guangdong Wang and
  • Zhanghua Han

Beilstein J. Nanotechnol. 2023, 14, 674–682, doi:10.3762/bjnano.14.53

Graphical Abstract
  • object it encounters, and the resulting optical force can be used to manipulate particles at the micro- or nanoscale. In this work, we present a detailed comparison through numerical simulations of the optical forces that can be exerted on polystyrene spheres of the same diameter. The spheres are placed
PDF
Album
Full Research Paper
Published 02 Jun 2023

Suspension feeding in Copepoda (Crustacea) – a numerical model of setae acting in concert

  • Alexander E. Filippov,
  • Wencke Krings and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 603–615, doi:10.3762/bjnano.14.50

Graphical Abstract
  • during suspension feeding. In the past, numerical simulations were used to study the detection of prey, mates, or predators and the feeding current generation by limb motion [28][39][40][41]. However, mechanical property gradients and adhesion of setae were previously not addressed. As model organism we
  • . Results and Discussion Numerical simulations In this study, we restricted ourselves to a few biologically important questions: Is there a difference in feeding performance between a system possessing only short setae near the mouth opening and a system with both types of setae, long and short ones? Which
  • amplitude? To elucidate this, we performed a set of numerical simulations with different configurations of the setae, the segments’ elasticity, and the adhesion of the segments. The relationship between different variants of elasticity for a system composed of only short setae, as well as for a system
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2023

Observation of multiple bulk bound states in the continuum modes in a photonic crystal cavity

  • Rui Chen,
  • Yi Zheng,
  • Xingyu Huang,
  • Qiaoling Lin,
  • Chaochao Ye,
  • Meng Xiong,
  • Martijn Wubs,
  • Yungui Ma,
  • Minhao Pu and
  • Sanshui Xiao

Beilstein J. Nanotechnol. 2023, 14, 544–551, doi:10.3762/bjnano.14.45

Graphical Abstract
  • simulation and experiment. After exciting the BIC cavity at different positions, different resonance peaks are observed. The physical origin of the dependence between the resonance peak and the illuminating position is explained by analyzing the mode profile distribution and further verified by numerical
  • simulations. Our findings have potential applications regarding the mode selectivity in BIC devices to manipulate the lasing mode in photonic-crystal surface-emitting lasers or the radiation pattern in nonlinear optics. Keywords: bound states in the continuum; bulk modes analysis; photonic crystal
PDF
Album
Full Research Paper
Published 27 Apr 2023

Specific absorption rate of randomly oriented magnetic nanoparticles in a static magnetic field

  • Ruslan A. Rytov and
  • Nikolai A. Usov

Beilstein J. Nanotechnol. 2023, 14, 485–493, doi:10.3762/bjnano.14.39

Graphical Abstract
  • paper, numerical simulations of the stochastic Landau–Lifshitz equation are used to study the dynamics of magnetization in dilute, randomly oriented assemblies of iron oxide nanoparticles under the combined action of ac and dc magnetic fields. It is shown that for nanoparticles with a diameter D < 25 nm
  • Ruslan A. Rytov Nikolai A. Usov National University of Science and Technology «MISiS», Moscow, Russia Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, Troitsk, Moscow, Russia 10.3762/bjnano.14.39 Abstract Numerical
  • simulations using the stochastic Landau–Lifshitz equation are performed to study magnetization dynamics of dilute assemblies of iron oxide nanoparticles exposed to an alternating (ac) magnetic field with an amplitude Hac = 200 Oe and a frequency f = 300 kHz and a static (dc) magnetic field in the range Hdc
PDF
Album
Full Research Paper
Published 14 Apr 2023

A mid-infrared focusing grating coupler with a single circular arc element based on germanium on silicon

  • Xiaojun Zhu,
  • Shuai Li,
  • Ang Sun,
  • Yongquan Pan,
  • Wen Liu,
  • Yue Wu,
  • Guoan Zhang and
  • Yuechun Shi

Beilstein J. Nanotechnol. 2023, 14, 478–484, doi:10.3762/bjnano.14.38

Graphical Abstract
  • depth. The incident angle is θ. In our work, the numerical simulations have been performed by using a commercial software of Lumerical FDTD solutions, which is based on the finite-difference time-domain method, and the light source we used for exciting the grating coupler is a Gaussian laser beam. The
PDF
Album
Full Research Paper
Published 06 Apr 2023

Quasi-guided modes resulting from the band folding effect in a photonic crystal slab for enhanced interactions of matters with free-space radiations

  • Kaili Sun,
  • Yangjian Cai,
  • Uriel Levy and
  • Zhanghua Han

Beilstein J. Nanotechnol. 2023, 14, 322–328, doi:10.3762/bjnano.14.27

Graphical Abstract
  • a large bandwidth. The huge local field enhancement, even higher than that in plasmonic nanoantennas, has been demonstrated using numerical simulations. Although a PCS structure in the form of air holes in a silicon slab is used for demonstration, we note the same physics can be extended to other
PDF
Album
Full Research Paper
Published 06 Mar 2023

A distributed active patch antenna model of a Josephson oscillator

  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2023, 14, 151–164, doi:10.3762/bjnano.14.16

Graphical Abstract
  • phase oscillations will not grow beyond |gn| = π. Instead, higher harmonic generation will occur. Full numerical simulations of the sine-Gordon equation (Equation 3), shown by blue symbols in Figure 2a, reveal that the amplitude of oscillations reach π at the end of the velocity-matching step. This
PDF
Album
Full Research Paper
Published 26 Jan 2023

Observation of collective excitation of surface plasmon resonances in large Josephson junction arrays

  • Roger Cattaneo,
  • Mikhail A. Galin and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2022, 13, 1578–1588, doi:10.3762/bjnano.13.132

Graphical Abstract
  • non-quadratic. Indeed, the nonlinear IMW(N) dependence often appears in corresponding numerical simulations [33]. Furthermore, the simple analysis above assumes a perfect phase-locking of the array to a single cavity mode, which is not always the case. During the experiments we observed switching
PDF
Album
Full Research Paper
Published 28 Dec 2022

Coherent amplification of radiation from two phase-locked Josephson junction arrays

  • Mikhail A. Galin,
  • Vladimir M. Krasnov,
  • Ilya A. Shereshevsky,
  • Nadezhda K. Vdovicheva and
  • Vladislav V. Kurin

Beilstein J. Nanotechnol. 2022, 13, 1445–1457, doi:10.3762/bjnano.13.119

Graphical Abstract
  • synchronization inside each array. The latter effect removes the limit of two for the gain factor. Finally, for better understanding, we performed numerical simulations of the inner dynamics for two interacting arrays. Our simulations confirm that two arrays can be phase-locked by a common EM field. They also
  • opposite at β > 1. Also note that the difference of asynchronous regions for array-a and array-b, which is clearly seen in Figure 6d, is caused by the different biasing sequences and the corresponding history-dependent dynamics. Discussion Our experimental data and numerical simulations demonstrate that
  • , then the gain factor would become four. This explanation is consistent with the observation that g > 2 is observed for higher steps (Table 1 and Table 2), which are less pronounced in the individually biased array-a. This is also confirmed by numerical simulations where we also observed g > 2
PDF
Album
Full Research Paper
Published 06 Dec 2022

Density of states in the presence of spin-dependent scattering in SF bilayers: a numerical and analytical approach

  • Tairzhan Karabassov,
  • Valeriia D. Pashkovskaia,
  • Nikita A. Parkhomenko,
  • Anastasia V. Guravova,
  • Elena A. Kazakova,
  • Boris G. Lvov,
  • Alexander A. Golubov and
  • Andrey S. Vasenko

Beilstein J. Nanotechnol. 2022, 13, 1418–1431, doi:10.3762/bjnano.13.117

Graphical Abstract
  • = 0, there is no suppression of the order parameter because there is no inverse proximity effect. In all numerical simulations, we assume that γ ≪ 1, that is, there is almost no superconductivity suppression in the superconductor. The transparency parameter γB is proportional to the interface
PDF
Album
Full Research Paper
Published 01 Dec 2022

Nonlinear features of the superconductor–ferromagnet–superconductor φ0 Josephson junction in the ferromagnetic resonance region

  • Aliasghar Janalizadeh,
  • Ilhom R. Rahmonov,
  • Sara A. Abdelmoneim,
  • Yury M. Shukrinov and
  • Mohammad R. Kolahchi

Beilstein J. Nanotechnol. 2022, 13, 1155–1166, doi:10.3762/bjnano.13.97

Graphical Abstract
  • numerical simulations of the dependence on α at different values of the SOC parameter r. It shows two specific features of ADD. First, with an increase in r, the critical value of Vpeak decreases (the curve moves away from ωF). The second important feature is an increase of αcrit, which is indicated by
  • arrows in the figure. Another model parameter that affects the phenomenon discussed in the present paper is the ratio G between Josephson energy and magnetic energy. Figure 4b demonstrates the results of numerical simulations of the dependence on α at different values of G. Similar to the effect of r
  • obtained from am approximated Duffing equation with numerical simulations of the total system in Equation 6. We show that in the limit of α ≪ G and r ≪ 1, we arrive at the Duffing oscillator. We start with the first three equations of Equation 6 for the magnetization components: Simplifying this system of
PDF
Album
Supp Info
Full Research Paper
Published 21 Oct 2022

Micro-structures, nanomechanical properties and flight performance of three beetles with different folding ratios

  • Jiyu Sun,
  • Pengpeng Li,
  • Yongwei Yan,
  • Fa Song,
  • Nuo Xu and
  • Zhijun Zhang

Beilstein J. Nanotechnol. 2022, 13, 845–856, doi:10.3762/bjnano.13.75

Graphical Abstract
  • through wind tunnel tests and numerical simulations, it was found that a higher aspect ratio of bionic wings leads to a higher lift-to-drag ratio [19]. The three-dimensional effect of flow is weakened with increasing aspect ratio, which increases the aerodynamic coefficient [47]. Based on beetle hind wing
PDF
Album
Full Research Paper
Published 26 Aug 2022

A superconducting adiabatic neuron in a quantum regime

  • Marina V. Bastrakova,
  • Dmitrii S. Pashin,
  • Dmitriy A. Rybin,
  • Andrey E. Schegolev,
  • Nikolay V. Klenov,
  • Igor I. Soloviev,
  • Anastasiya A. Gorchavkina and
  • Arkady M. Satanin

Beilstein J. Nanotechnol. 2022, 13, 653–665, doi:10.3762/bjnano.13.57

Graphical Abstract
  • and the formation of the sigmoidal activation function have also been studied. We start with the parameters of the input flux as presented in Figure 3. Numerical simulations demonstrate a distortion of the sigmoidal form of the activation function even when the SQ neuron is initialized in the ground
  • instantaneous eigenbasis. Numerical simulations are performed for the temperature of the bosonic thermostat at T = 50 mK. We investigated the relaxation of the excited states for both the single-well (l < l*, Figure 10a,c) and double-well (l > l*, Figure 10b,d) potential shapes. The key result is the
  • SQ neuron concept was developed with the support of the Russian Science Foundation (project no. 20-12-00130). The numerical simulations were supported by UNN within the framework of the strategic academic leadership program “Priority 2030” of the Ministry of Science and Higher Education of the
PDF
Album
Full Research Paper
Published 14 Jul 2022

Approaching microwave photon sensitivity with Al Josephson junctions

  • Andrey L. Pankratov,
  • Anna V. Gordeeva,
  • Leonid S. Revin,
  • Dmitry A. Ladeynov,
  • Anton A. Yablokov and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2022, 13, 582–589, doi:10.3762/bjnano.13.50

Graphical Abstract
  • achieve in real junctions. In our opinion, the most reliable way to determine the critical current is to compare the experimental lifetime as a function of the current with the lifetime calculated using numerical simulations [39][40][41] in the frame of the resistively–capacitively shunted junction (RCSJ
  • need to use numerical simulations since, in the experiment, we are limited by the time constant of the filters that provide suppression of external interferences. As a result, we cannot measure switching times faster than the time constant, which in our case is about 1 ms. To obtain shorter times, we
  • increases significantly. In Figure 5, one can see how the switching probability evolves with increasing temperature from 50 to 500 mK. The difference is not very large because at 50 mK the effective temperature was rather 265 mK, according to numerical simulations, and the thermal current at 500 mK is much
PDF
Album
Full Research Paper
Published 04 Jul 2022

Tunable superconducting neurons for networks based on radial basis functions

  • Andrey E. Schegolev,
  • Nikolay V. Klenov,
  • Sergey V. Bakurskiy,
  • Igor I. Soloviev,
  • Mikhail Yu. Kupriyanov,
  • Maxim V. Tereshonok and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2022, 13, 444–454, doi:10.3762/bjnano.13.37

Graphical Abstract
  • implementation of the key elements of the discussed neural networks is the focus of this work. Results and Discussion Model of tunable Gauss-neuron: numerical simulations A common architecture of the considered RBFNs [49] is presented in Figure 1a. These networks have only one hidden layer of neurons on which
  • dash–dot line) mutual orientations of magnetization between FM1 and FM2 layers as functions of the spacer thickness. Funding G-neuron and tunable inductance were developed with the support of the Russian Science Foundation (project no. 20-69-47013). The numerical simulations were supported within the
PDF
Album
Full Research Paper
Published 18 May 2022

Theoretical understanding of electronic and mechanical properties of 1T′ transition metal dichalcogenide crystals

  • Seyedeh Alieh Kazemi,
  • Sadegh Imani Yengejeh,
  • Vei Wang,
  • William Wen and
  • Yun Wang

Beilstein J. Nanotechnol. 2022, 13, 160–171, doi:10.3762/bjnano.13.11

Graphical Abstract
  • to their composition and structural polytypes. However, experimental measurements of the electronic and mechanical properties of 2D materials face the challenge of synthesizing high-quality pristine crystals. Thus, numerical simulations have become a promising alternative due to the relatively good
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2022

Heating ability of elongated magnetic nanoparticles

  • Elizaveta M. Gubanova,
  • Nikolai A. Usov and
  • Vladimir A. Oleinikov

Beilstein J. Nanotechnol. 2021, 12, 1404–1412, doi:10.3762/bjnano.12.104

Graphical Abstract
  • anisotropy constant was assumed [28][29] to be promising in magnetic hyperthermia. However, numerical simulations [30] showed that for spherical nanoparticles an increase of the uniaxial anisotropy constant leads to a decrease in SAR and a shift of the optimal particle diameters to smaller dimensions
PDF
Album
Full Research Paper
Published 28 Dec 2021

Design aspects of Bi2Sr2CaCu2O8+δ THz sources: optimization of thermal and radiative properties

  • Mikhail M. Krasnov,
  • Natalia D. Novikova,
  • Roger Cattaneo,
  • Alexey A. Kalenyuk and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2021, 12, 1392–1403, doi:10.3762/bjnano.12.103

Graphical Abstract
  • sources. In this work we analyze thermal and radiative properties of such devices based on mesa structures of a layered high-temperature superconductor Bi2Sr2CaCu2O8+δ. Two types of devices are considered containing either a conventional large single crystal or a whisker. We perform numerical simulations
  • needle-like whisker. We present numerical simulations for various geometrical configurations and parameters and make a comparison with experimental data. It is demonstrated that the structure and the geometry of both the superconductor and the electrodes play important roles. Electrodes provide an
  • the substrate, see Figure 6c. Therefore, the substrate acts as a dielectric resonator and may strongly affect the radiation pattern of the device. The presented numerical simulations provide a qualitative explanation of the reported difference in radiative properties of whisker- and crystal-based
PDF
Album
Full Research Paper
Published 21 Dec 2021

Cantilever signature of tip detachment during contact resonance AFM

  • Devin Kalafut,
  • Ryan Wagner,
  • Maria Jose Cadena,
  • Anil Bajaj and
  • Arvind Raman

Beilstein J. Nanotechnol. 2021, 12, 1286–1296, doi:10.3762/bjnano.12.96

Graphical Abstract
  • to improve their measurements. We shed light on this issue by deliberately pushing both our experimental equipment and numerical simulations to the point of tip–sample detachment to explore cantilever dynamics during a useful and observable threshold feature in the measured response. Numerical
  • nonlinear response feature to the onset of tip–sample detachment in our numerical simulations to confirm the conclusions from prior works [26][27][28]. The simulations allow for deeper insight into cantilever dynamics during the interaction between the AFM probe tip and the sample, which in turn allow us to
  • measurements and numerical simulations of cantilever response amplitude as a function of drive frequency at different drive amplitudes are shown in Figure 1. Figure 1a shows the experimental photodiode amplitude signal as recorded with the lock-in amplifier of the AFM in units of volts. Figure 1b compares the
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2021

Nonmonotonous temperature dependence of Shapiro steps in YBCO grain boundary junctions

  • Leonid S. Revin,
  • Dmitriy V. Masterov,
  • Alexey E. Parafin,
  • Sergey A. Pavlov and
  • Andrey L. Pankratov

Beilstein J. Nanotechnol. 2021, 12, 1279–1285, doi:10.3762/bjnano.12.95

Graphical Abstract
  • shown in Figure 1. Figure 2 shows the IVCs for temperatures of 70 and 50 K in the absence of a high-frequency signal and in the regime of detecting external 72 or 265 GHz signals. The measurement results are in good agreement with the numerical simulations (the black curves). It should be noted that the
PDF
Album
Full Research Paper
Published 23 Nov 2021

A review on slip boundary conditions at the nanoscale: recent development and applications

  • Ruifei Wang,
  • Jin Chai,
  • Bobo Luo,
  • Xiong Liu,
  • Jianting Zhang,
  • Min Wu,
  • Mingdan Wei and
  • Zhuanyue Ma

Beilstein J. Nanotechnol. 2021, 12, 1237–1251, doi:10.3762/bjnano.12.91

Graphical Abstract
  • conversion from 3 to 70% [23]. Generally, the methods to investigate slip boundary conditions for nanoconfined liquids include theoretical analysis, physical experiments, and numerical simulations [8][24][25][26][27][28][29][30][31][32][33][34]. In recent years, machine learning methods have also been
  • force [39][40][41][42]. However, compared with experimental methods, numerical simulations, such as the lattice Boltzmann method and molecular dynamics (MD) simulation, are more attractive in many aspects. First, numerical simulations can readily reach the system sizes and timescales of practical
  • nanoflows [43]. Additionally, numerical methods can provide a controllable way to change a certain property of liquid or solid walls while other properties remain unchanged [44]. In comparison with physical experiments, numerical simulations allow researchers to study the density, velocity profiles, and
PDF
Album
Review
Published 17 Nov 2021

Electromigration-induced formation of percolating adsorbate islands during condensation from the gaseous phase: a computational study

  • Alina V. Dvornichenko,
  • Vasyl O. Kharchenko and
  • Dmitrii O. Kharchenko

Beilstein J. Nanotechnol. 2021, 12, 694–703, doi:10.3762/bjnano.12.55

Graphical Abstract
  • islands during condensation from the gaseous phase. We will show that the elongated morphology of adsorbate islands remains stable if the electric field is turned off. Keywords: adsorptive systems; electromigration; numerical simulations; pattern formation; thin films; Introduction The processes of
  • of adsorbate concentration on the substrate. After that, we discuss the results of numerical simulations. The main conclusions are collected in the last section. Model In order to describe the evolution of the adsorbate concentration on the first growing layer of the multilayer system during
  • strength ε extends the domain of α and k∥ in which patterning is possible. Numerical simulations In order to perform numerical simulations of the process of pattern formation during deposition we will proceed in a manner closely related to [63][64]. We will solve numerically Equation 4 on a two-dimensional
PDF
Album
Letter
Published 13 Jul 2021

Determination of elastic moduli of elastic–plastic microspherical materials using nanoindentation simulation without mechanical polishing

  • Hongzhou Li and
  • Jialian Chen

Beilstein J. Nanotechnol. 2021, 12, 213–221, doi:10.3762/bjnano.12.17

Graphical Abstract
  • cannot be controlled. There are no reliable theoretical or experimental methods to evaluate the mechanical behavior during nanoindentation of an elastic–plastic microsphere. Therefore, it is necessary to conduct reliable numerical simulations to evaluate this behavior. This article reports a systematic
  • the mechanical behavior during nanoindentation of a curved specimen. Therefore, it is necessary to conduct reliable numerical simulations to evaluate the mechanical behavior of nanoindentation on an elastic–plastic microspherical material. The numerical simulations are usually carried out via the
PDF
Album
Full Research Paper
Published 19 Feb 2021
Other Beilstein-Institut Open Science Activities